Redox Homeostasis Plays Important Roles in the Maintenance of the Drosophila Testis Germline Stem Cells

نویسندگان

  • Sharon Wui Sing Tan
  • Qian Ying Lee
  • Belinda Shu Ee Wong
  • Yu Cai
  • Gyeong Hun Baeg
چکیده

Oxidative stress influences stem cell behavior by promoting the differentiation, proliferation, or apoptosis of stem cells. Thus, characterizing the effects of reactive oxygen species (ROS) on stem cell behavior provides insights into the significance of redox homeostasis in stem cell-associated diseases and efficient stem cell expansion for cellular therapies. We utilized the Drosophila testis as an in vivo model to examine the effects of ROS on germline stem cell (GSC) maintenance. High levels of ROS induced by alteration in Keap1/Nrf2 activity decreased GSC number by promoting precocious GSC differentiation. Notably, high ROS enhanced the transcription of the EGFR ligand spitz and the expression of phospho-Erk1/2, suggesting that high ROS-mediated GSC differentiation is through EGFR signaling. By contrast, testes with low ROS caused by Keap1 inhibition or antioxidant treatment showed an overgrowth of GSC-like cells. These findings suggest that redox homeostasis regulated by Keap1/Nrf2 signaling plays important roles in GSC maintenance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Maf functions in the maintenance of germline stem cells in the Drosophila testis

Reactive oxygen species (ROS) are byproducts generated during normal cellular metabolism, and redox states have been shown to influence stem cell self-renewal and lineage commitment across phyla. However, the downstream effectors of ROS signaling that control stem cell behavior remain largely unexplored. Here, we used the Drosophila testis as an in vivo model to identify ROS-induced effectors t...

متن کامل

Bi-directional gap junction-mediated soma-germline communication is essential for spermatogenesis.

Soma-germline interactions play conserved essential roles in regulating cell proliferation, differentiation, patterning and homeostasis in the gonad. In the Drosophila testis, secreted signalling molecules of the JAK-STAT, Hedgehog, BMP and EGF pathways are used to mediate soma-germline communication. Here, we demonstrate that gap junctions may also mediate direct, bi-directional signalling bet...

متن کامل

The Fertile Field of Drosophila JAK/STAT Signalling

The JAK/STAT pathway plays important roles in vertebrate and invertebrate development. The recent cloning and characterisation of the receptor in Drosophila shows that the pathway is conserved across phyla. In this review we describe current knowledge of the pathway and use genome data to discuss what elements are present in Drosophila. We also summarise recent work describing the involvement o...

متن کامل

Dev123448 2598..2609

Soma-germline interactions play conserved essential roles in regulating cell proliferation, differentiation, patterning and homeostasis in the gonad. In theDrosophila testis, secreted signallingmolecules of the JAK-STAT, Hedgehog, BMP and EGF pathways are used to mediate soma-germline communication. Here, we demonstrate that gap junctions may also mediate direct, bi-directional signalling betwe...

متن کامل

The Histone Variant His2Av is Required for Adult Stem Cell Maintenance in the Drosophila Testis

Many tissues are sustained by adult stem cells, which replace lost cells by differentiation and maintain their own population through self-renewal. The mechanisms through which adult stem cells maintain their identity are thus important for tissue homeostasis and repair throughout life. Here, we show that a histone variant, His2Av, is required cell autonomously for maintenance of germline and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017